Impact of climate change on Holm Oak mortality and dieback in the High Atlas, Morocco’s Mediterranean climate
Impact of climate change on Holm Oak mortality and dieback in the High Atlas, Morocco’s Mediterranean climate
Forests are facing unprecedented mortality and dieback globally. While Holm oak decline is well-studied in the northern Mediterranean, its drivers in North Africa remain poorly understood, challenging conservation efforts. In Morocco’s High Atlas, Holm oak forests span altitudes of 1200–2200 meters on limestone substrates in subhumid and semi-arid bioclimates. The Standardized Precipitation Evapotranspiration Index (SPEI) reveals severe droughts, and PCA analyses show strong links between reduced precipitation, rising temperatures, and Holm oak decline. Areas with low rainfall and high temperatures suffer the most, especially during hot seasons. Mixed Holm oak shrubs exhibit the highest decline rate (40.31%), followed by pure Holm oak shrubs (25.88%) and forests (19.92%). Mixed forests are more vulnerable. Larger trees with greater height and diameter at breast height (DBH) show higher resistance, while factors like elevation, soil type, and canopy cover have minimal impact. Southern slopes are particularly affected due to increased solar radiation. Holm oak decline begins with dieback, leading to mortality. This decline underlines significant ecological and socio-economic consequences, including habitat loss and severe impacts on local community. These findings emphasize the need for targeted conservation strategies to mitigate the effects of climate change on these forests.
Alami, A. 2022: Biodiversity Loss in the Moroccan central High Atlas, its Impact on Local Ecosystems and National Economy , and Wildlife Conservation Strategy : Findings from 20 years of Research. – J. Anal. Sci. Appl. Biotechnol. 4: 81-96.
Alderotti, F. &Verdiani, E. 2023: God save the queen! How and why the dominant evergreen species of the Mediterranean Basin is declining? – AoB PLANTS 15: plad051.
Allen, C. & Breshears, D. D. 1998: Drought-induced shift of a forest-woodland ecotone: Rapid landscape response to climate variation. – Proc. Nat. Acad. Sci. USA 95: 14839-14842. https://doi.org/10.1073/pnas.95.25.14839
Allen, R. G., Pereira, L. S., Raes, D. & Smith, M. 1998: Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper – Rome.
Anderegg, W. R., Hicke, J. A., Fisher, R. A., Allen, C. D., Aukema, J. & al. 2015: Tree mortality from drought, insects, and their interactions in a changing climate. – New Phytol. 208: 674-683. https://doi.org/10.1111/nph.13477
––, Kane, J. M. & Anderegg, L. D. L. 2013: Consequences of widespread tree mortality triggered by drought and temperature stress. – Nat. Clim. Change 3: 30-36. https://doi.org/10.1038/nclimate1635
Barbeta, A. & Peñuelas, J.. 2016: Sequence of plant responses to droughts of different timescales: lessons from holm oak (Quercus ilex) forests. – Pl. Ecol. Divers. 9: 321-338. https://doi.org/10.1080/17550874.2016.1212288
Batllori, E., Lloret, F., Aakala, T., Anderegg, W. R., Aynekulu, E. & al. 2020: Forest and woodland replacement patterns following drought-related mortality. – Proc. Natl. Acad. Sci. U.S.A. 117: 29720-29729. https://doi.org/10.1073/pnas.2002314117
Belko, N., Zaman‑Allah, M., Diop, N. N., Cisse, N., Zombre, G. & al. 2013: Restriction of transpiration rate under high vapour pressure deficit and non-limiting water conditions is important for terminal drought tolerance in cowpea. – Pl. Biol. 15: 304-316. https://doi.org/10.1111/j.1438-8677.2012.00642.x
Bell, B. A., Hughes, P. D., Fletcher, W. J., Cornelissen, H. L., Rhoujjati, A. & al. 2022: Climate of tthe Marrakech High Atlas, Morocco: Temperature lapse rates and precipitation gradient from piedmont to summits. – Arct. Antarct. Alp. Res. 54: 78-95. https://doi.org/10.1080/15230430.2022.2046897
Benabid, A. 1982: Bref aperçu sur la zonation altitudinale de la végétation climacique du Maroc. – Ecol. Medit. 8: 301-315.
Benabid, A. 1985: Les écosystèmes forestiers, préforestiers et presteppiques du Maroc : diversité, répartition biogéographique et problèmes posés par leur aménagement. – Forêt Médit. 7: 53-64.
Bennett, A. C., McDowell, N. G., Allen, C. D. & Anderson‑Teixeira, K. J. 2015: Larger trees suffer most during drought in forests worldwide. – Nat. Pl. 1: 1-5. https://doi.org/10.1038/nplants.2015.139
Braun-Blanquet, J. & Maire, R. 1921: Études sur La végétation et La flore marocaines: comptes-rendus des herborisations de la société botanique de France, session du Maroc, 1921. – Bull. Soc. Bot. Fr. 68: 5-7.
Caliskan, S. 2014: Germination and seedling growth of holm oak (Quercus ilex L.): effects of provenance, temperature, and radicle pruning. – iForest 7: 103-109. https://doi.org/10.3832/ifor0967-007
Camarero, J. J., Sánchez‑Salguero, R., Sangüesa‑Barreda, G., Lechuga, V., Viñegla, B. & al. 2021: Drought, axe and goats. More variable and synchronized growth forecasts worsening dieback in Moroccan Atlas cedar forests. – Sci. Total Environ. 765: 142752. https://doi.org/10.1016/j.scitotenv.2020.142752
Choat, B., Brodribb, T. J., Brodersen, C. R., Duursma, R. A., López, R. & Medlyn, B. E. 2018: Triggers of tree mortality under drought. – Nature 558: 531-539. https://doi.org/10.1038/s41586-018-0240-x
Da Costa, A. C. L., Galbraith, D., , Almeida, S., Portela, B. T. T., da Costa, M. & al. 2010: Effect of 7 yr of experimental drought on vegetation dynamics and biomass storage of an eastern Amazonian rainforest. – New Phytol. 187: 579-591. https://doi.org/10.1111/j.1469-8137.2010.03309.x
Daget, P. 1977: Le bioclimat méditerranéen : analyse des formes climatiques par le système d’Emberger. – Vegetatio 34: 87-103.
Dallahi, Y., Boujraf, A., Meliho, M. & Orlando C. A. 2023: Assessment of forest dieback on the Moroccan Central Plateau using spectral vegetation indices. – J. For. Res. 34: 793-808. https://doi.org/10.1007/s11676-022-01525-x
DeHayes, D. H., Jacobson, G. L., Schaberg, P. G., Bongarten, B., Iverson, L. & Dieffenbacher-Krall, A. C. 2000: Forest Responses to Changing Climate: Lessons from the Past and Uncertainty for the Future. – Pp. 495-540. In: Mickler, R.A., Birdsey, R.A., Hom, J. (eds), Responses of Northern U.S. Forests to Environmental Change, 139. – New York.
Dorado, F. J., Corcobado, T., Brandano, A., Abbas, Y., Alcaide, F. & al. 2022: First Report of Dieback of Quercus suber Trees Associated with Phytophthora quercina in Morocco. –Pl. Dis. 107: 1246. https://doi.org/10.1094/PDIS-08-22-1795-PDN
Dyer, J. M. 2009: Assessing topographic patterns in moisture use and stress using a water balance approach. – Landsc. Ecol. 24: 391-403. https://doi.org/10.1007/s10980-008-9316-6
Eliades, F., Sarris, D., Bachofer, F., Michaelides, S. & Hadjimitsis, D. 2024: Understanding Tree Mortality Patterns: A Comprehensive Review of Remote Sensing and Meteorological Ground-Based Studies. – Forests 15: 1357. https://doi.org/10.3390/f15081357
Fernández-de-Uña, L., Martínez-Vilalta, J., Poyatos, R., Mencuccini, M. & McDowell N. G. 2023: The role of height-driven constraints and compensations on tree vulnerability to drought. – New Phytol. 239: 2083-2098. https://doi.org/10.1111/nph.19130
Fischbein, D., & Corley, J. C. 2022: Population ecology and classical biological control of forest insect pests in a changing world. – For. Ecol. Manag. 520: 120400. https://doi.org/10.1016/j.foreco.2022.120400
García-Angulo, D., Hereş, A.-M., Fernández-López, M., Flores O., Sanz, M. J. & al. 2020: Holm oak decline and mortality exacerbates drought effects on soil biogeochemical cycling and soil microbial communities across a climatic gradient. – Soil Biol. Biochem. 149: 107921. https://doi.org/10.1016/j.soilbio.2020.107921
Gea-Izquierdo, G., Natalini, F., & Cardillo, E. 2021. Holm oak death is accelerated but not sudden and expresses drought legacies. – Sci. Total Environ. 754: 141793. https://doi.org/10.1016/j.scitotenv.2020.141793
Gharnit, Y., Moujane, A., Outourakhte, A., Hassan, I., El Amraoui, K. & al. 2025: Plant Richness, Species Assessment, and Ecology in the M’goun Geopark Rangelands, High Atlas Mountains, Morocco. – Rangel. Ecol. Manag. 98: 357-376. https://doi.org/10.1016/j.rama.2024.08.022
––, Outourakht, A., Boulli, A. & Hassib, A. 2023. Biodiversity, Autecology and Status of Aromatic and Medicinal Plants in Geopark M’Goun (Morocco). – Ann. Bot. 13: 39-54. https://doi.org/10.13133/2239-3129/18027
––, Outourakhte, A., Moujane, A., Ikhmerdi, H., Hasib, A., & Boulli, A. 2024: Habitat diversity, ecology, and change assessment in the geoparc M’goun in High Atlas Mountains of Morocco. – Geol. Ecol. Landsc.: 1-22. https://doi.org/10.1080/24749508.2024.2431354
Grossiord, C., Buckley, T. N., Cernusak, L. A., Novick, K. A., Poulter, B. & al. 2020: Plant responses to rising vapor pressure deficit. – New Phytol. 226: 1550-1566. https://doi.org/10.1111/nph.16485
Huang, S., Tang, L., Hupy, J. P., Wang, Y. & Shao, G. 2021: A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing. –J. For. Res. 32: 1-6. https://doi.org/10.1007/s11676-020-01155-1
Jung, T., Blaschke, H., & Oßwald, W. 2000: Involvement of soilborne Phytophthora species in Central European oak decline and the effect of site factors on the disease. – Pl. Pathol. 49: 706-718. https://doi.org/10.1046/j.1365-3059.2000.00521.x
Jurskis, V. 2005: Eucalypt decline in Australia, and a general concept of tree decline and dieback. – For. Ecol. Manag. 215: 1-20. https://doi.org/10.1016/j.foreco.2005.04.026
Kassie, A. W., Moges, A., Alelign, T. & G. Bayeh. 2024. Economic Valuation of Ecosystem Services and Its Association with Socioeconomic Factors in the Wof-Washa Natural State Forest, North Shewa Zone, Ethiopia. – Scientifica 2024: 6607551. https://doi.org/10.1155/2024/6607551
Khatouri, M. 1992: Growth and yield of young Quercus ilex coppice stands in the Tafferte forest (Morocco). – Pp. 77-82 in: Romane, F., Terradas, J. (eds), Quercus ilex L. ecosystems: function, dynamics and management. – Dordrecht.
Khayi, S., Armitage, A. D., Gaboun, F., Meftah-Kadmiri, I. Lahlali, R. & al. 2023: Chromosome-scale assembly uncovers genomic compartmentation of Fusarium oxysporum f. sp. albedinis, the causal agent of Bayoud disease in date palm. – Front. Microbiol. 14: 1268051. https://doi.org/10.3389/fmicb.2023.1268051
Kholová, J., Nepolean, T., Tom Hash, C., Supriya, A., Rajaram, V., Senthilvel, S., & Kakkera, A. 2012: Water saving traits co-map with a major terminal drought tolerance quantitative trait locus in pearl millet [Pennisetum glaucum (L.) R. Br.]. – MMol. Breed. 30: 1337-1353. https://doi.org/10.1007/s11032-012-9720-0
Kichas, N. E., Hood, S. M., Pederson, G. T., Everett, R. G. & McWethy D. B. 2020: Whitebark pine (Pinus albicaulis) growth and defense in response to mountain pine beetle outbreaks. – For. Ecol. Manag. 457: 117736. https://doi.org/10.1016/j.foreco.2019.117736
Kodero, J. M., Felzer, B. S. & Shi, Y. 2024: Future transition from forests to shrublands and grasslands in the western United States is expected to reduce carbon storage. – Commun. Earth Environ. 5: 78. https://doi.org/10.1038/s43247-024-01253-6
Landsberg, J. & Wylie, F. R. 1983: Water stress, leaf nutrients and defoliation: a model of dieback of rural eucalypts. – Aust. J. Ecol. 8: 27-41. https://doi.org/10.1111/j.1442-9993.1983.tb01516.x
Lihui, M., Xiaoli, L., Jie, C., Youke, W. & Jingui, Y. 2021: Effects of Slope Aspect and Rainfall on Belowground Deep Fine Root Traits and Aboveground Tree Height. – Front. Pl. Sci. 12: 684468. https://doi.org/10.3389/fpls.2021.684468
Liñán, J., Cantos, M., Troncoso, J., García, J. L., Fernández, A. & Troncoso, A. 2011: Some propagation methods for cloning holm oak (Quercus ilex L.) plants. – Cent. Eur. J. Biol. 6: 359-364. https://doi.org/10.2478/s11535-011-0007-y
Linares, J. C. & Tíscar, P. A. 2010: Climate change impacts and vulnerability of the southern populations of Pinus nigra subsp. salzmannii. – Tree Physiol. 30: 795-806. https://doi.org/10.1093/treephys/tpq052
––, Taïqui L. & Camarero J. J. 2011: Increasing drought sensitivity and decline of Atlas cedar (Cedrus atlantica) in the Moroccan Middle Atlas forests. – Forests 2: 777-796. https://doi.org/10.3390/f2030777
––, ––, Sangüesa-Barreda G., Seco J. I. & Camarero J. J. 2013: Age-related drought sensitivity of Atlas cedar (Cedrus atlantica) in the Moroccan Middle Atlas forests. – Dendrochronologia 31: 88-96. https://doi.org/10.1016/j.dendro.2012.08.003
Lindenmayer, D. B. & Laurance, W. F. 2017. The ecology, distribution, conservation and management of large old trees. – Biol. Rev. 92: 1434-1458. https://doi.org/10.1111/brv.12290
Liyaqat, I., Balzano, A., Niccoli, F., Kabala, J. P., Merela, M. & Battipaglia, G. 2024: Xylogenesis Responses to a Mediterranean Climate in Holm Oak (Quercus ilex L.). –Forests 15: 1386. https://doi.org/10.3390/f15081386
Magalhães, J. G. de S., Amoroso, M. M. & Larson B. C. 2021: What evidence exists on the effects of competition on trees’ responses to climate change? A systematic map protocol. – Environ. Evid. 10: 34. https://doi.org/10.1186/s13750-021-00249-5
McDowell, N. G., Sapes, G., Pivovaroff, A., Adams, H. D., Allen, C. D., Anderegg, W. R. & Xu, C. 2022: Mechanisms of woody-plant mortality under rising drought, CO2 and vapour pressure deficit. – Nat. Rev. Earth Environ. 3: 294-308. https://doi.org/10.1038/s43017-022-00272-1
Medina, S., Vicente R., Nieto-Taladriz, M. T., Aparicio N., Chairi F. & al. 2019: The Plant-Transpiration Response to Vapor Pressure Deficit (VPD) in Durum Wheat Is Associated With Differential Yield Performance and Specific Expression of Genes Involved in Primary Metabolism and Water Transport. – Front. Pl. Sci. 9: 1994. https://doi.org/10.3389/fpls.2018.01994
Meneses-Tovar, C. L. 2011: NDVI as indicator of degradation. – Unasylva 62: 39-46.
Michaud, H., Toumi, L., Lumaret, R., Li, T. X., Romane, F. & Di Giusto, F. 1995: Effect of geographical discontinuity on genetic variation in Quercus ilex L. (holm oak). Evidence from enzyme polymorphism. – Heredity 74: 590-606. https://doi.org/10.1038/hdy.1995.83
Molina, M. O., Sánchez, E. & Gutiérrez, C. 2020: Future heat waves over the Mediterranean from an Euro-CORDEX regional climate model ensemble. – Sci. Rep. 10: 8801. https://doi.org/10.1038/s41598-020-65663-0
Montes-Vega, M. J., Guardiola-Albert, C. & Rodríguez-Rodríguez, M. 2023: Calculation of the SPI, SPEI, and GRDI Indices for Historical Climatic Data from Doñana National Park: Forecasting Climatic Series (2030–2059) Using Two Climatic Scenarios RCP 4.5 and RCP 8.5 by IPCC. – Water 15: 2369. https://doi.org/10.3390/w15132369
Moujane, A., Outourakhte, A., Gharnit Y., Boulli, A. & Ouhammou, A. 2023: Geographical distribution of the Thuriferous juniper (Juniperus thurifera L.) and the influencing factors in the Atlas Mountains of Azilal (Central High Atlas, Morocco). – Geology, Ecology, Landscapes 7: 1-12. https://doi.org/10.1080/24749508.2023.2203281
Mueller-Dombois, D. 1988: Forest decline and dieback : A global ecological problem. – Trends Ecol. Evol. 3: 310-312. https://doi.org/10.1016/0169-5347(88)90108-5
Natalini, F., Alejano, R., Vázquez-Piqué, J., Cañellas, I. & Gea-Izquierdo, G. 2016: The role of climate change in the widespread mortality of holm oak in open woodlands of Southwestern Spain. – Dendrochronologia 38: 51-60. https://doi.org/10.1016/j.dendro.2016.03.003
Niu, S., Luo, Y., Li, D., Cao, S., Xia, J., Li, J. & Smith, M. D. 2014: Plant growth and mortality under climatic extremes: An overview. – Environ. Exp. Bot. 98: 13-19. https://doi.org/10.1016/j.envexpbot.2013.10.004
Novák, V. 2011. Evapotranspiration. – Pp. 280-283 in: Gliński, J., Horabik, J., Lipiec, J. (eds), Encyclopedia of Agrophysics – Dordrecht.
Oliva, J., Boberg, J. B., Hopkins, A. J., & Stenlid, J. 2013: Concepts of epidemiology of forest diseases. – Pp. 1-28 in Gonthier, P. & Nicolotti, G. (eds), Infectious forest diseases, 1. – Wallingford.
Ouchbani, S. & Romane, F. 1995: Gradient climatique et répartition de la végétation dans l’Atlas de Béni Mellal (Maroc). – Bull. Inst. Sci. 19: 53-64.
Outourakhte, A., Gharnit, Y., Moujane, A., El Haddany, K., Hasib, A. & Boulli, A. 2025: The Floristic Composition and Phytoecological Characterization of Plant Communities in the M’Goun Geopark, High Atlas, Morocco. – Ecologies 6(2): 29. https://doi.org/10.3390/ecologies6020029
Panaïotis, C., Carcaillet, C. & M’Hamedi, M. 1997: Determination of the natural mortality age of an holm oak (Quercus ilex L.) stand in Corsica (Mediterranean Island). – Acta Oecol. 18: 519-530. https://doi.org/10.1016/S1146-609X(97)80038-0
Paredes, P. & Pereira, L. S. 2019: Computing FAO56 reference grass evapotranspiration PM-ETo from temperature with focus on solar radiation. Agric. –Water Manag. 215: 86-102. https://doi.org/10.1016/j.agwat.2018.12.014
Peguero‑Pina, J. J., Morales, F., Flexas, J., Gil‑Pelegrín, E. & Moya, I. 2008: Photochemistry, remotely sensed physiological reflectance index and de-epoxidation state of the xanthophyll cycle in Quercus coccifera under intense drought. – Oecologia 156: 1-11. https://doi.org/10.1007/s00442-007-0957-y
Peñuelas, J., Lloret, F. & Montoya, R. 2001: Severe drought effects on Mediterranean woody flora in Spain. – For. Sci. 47: 214-218. https://doi.org/10.1093/forestscience/47.2.214
Pretzsch, H., del Río, M., Arcangeli, C., Bielak, K., Dudzinska & al. 2023: Competition-based mortality and tree losses. An essential component of net primary productivity. – For. Ecol. Manag. 544: 121204. https://doi.org/10.1016/j.foreco.2023.121204
Rafiqi, M., Jelonek, L., Diouf, A. M., Mbaye, A., Rep, M. & Diarra, A. 2022: Profile of the in silico secretome of the palm dieback pathogen, Fusarium oxysporum f. sp. albedinis, a fungus that puts natural oases at risk. – PLOS ONE 17: e0260830. https://doi.org/10.1371/journal.pone.0260830
Randhir, T. O. & Erol, A. 2013: Emerging threats to forests: resilience and strategies at system scale. – Amer. J. Pl. Sci. 4: 739-748. https://doi.org/10.4236/ajps.2013.43A093
Rita, A., Bonanomi, G., Allevato, E., Borghetti, M., Cesarano & al. 2021: Topography modulates near-ground microclimate in the Mediterranean Fagus sylvatica treeline. – Sci. Rep. 11: 8122. https://doi.org/10.1038/s41598-021-87661-6
Rivas Martínez, S. & Gandullo J. M. 1987: Memoria del mapa de series de vegetación de España: 1: 400.000. – Madrid.
Rodríguez‑Romero, M., Gallardo, A., Pérez, A. & Pulido, F. 2022: Interactive effects of biotic stressors and provenance on chemical defence induction by holm oak (Quercus ilex). –Trees 36: 227-240. https://doi.org/10.1007/s00468-021-02201-z
Roncé Le, I., Dardevet, E., Venner, S., Schönbeck, L., Gessler, A. & al. 2023: Reproduction alternation in trees: testing the resource depletion hypothesis using experimental fruit removal in Quercus ilex. – Tree Physiol. 43: 952-964. https://doi.org/10.1093/treephys/tpad025
––, Gavinet, J., Ourcival, J.-M., Mouillot, F., Chuine, I. & Limousin, J.-M. 2021; Holm oak fecundity does not acclimate to a drier world. – New Phytol. 231: 631-645. https://doi.org/10.1111/nph.17412
Ruiz-Gómez, F. J. & Miguel-Rojas, C. 2021: Antagonistic Potential of Native Trichoderma spp. against Phytophthora cinnamomi in the Control of Holm Oak Decline in Dehesas Ecosystems. – Forests 12: 945. https://doi.org/10.3390/f12070945
Salvador, C., Nieto, R., Kapwata, T., Wright, C. Y., Reason, C. & al. 2024: Analyzing the effects of drought at different time scales on cause-specific mortality in South Africa. – Environ. Res. Lett. 19: 54022. https://doi.org/10.1088/1748-9326/ad3bd2
Sena, K., Crocker, E., Vincelli, P. & Barton, C. 2018: Phytophthora cinnamomi as a driver of forest change: Implications for conservation and management. – For. Ecol. Manag. 409: 799-807. https://doi.org/10.1016/j.foreco.2017.12.022
Terradas, J. 1999: Holm Oak and Holm Oak Forests: An Introduction. – Pp. 3-14 in: Rodà, F., Retana, J., Gracia, C.A., Bellot, J. (eds), Ecology of Mediterranean Evergreen Oak Forests, 137. – Berlin.
Thompson, I., Mackey, B., McNulty, S. & Mosseler, A. 2009: Forest resilience, biodiversity, and climate change. A synthesis of the biodiversity/resilience/stability relationship in forest ecosystems – Montreal.
Tkaczyk, M. & Sikora K. 2024: Interaction between Brenneria goodwinii and Phytophthora species on young Quercus robur seedlings. – Eur. J. For. Res. 143(6): 1893-1901. https://doi.org/10.1007/s10342-024-01735-4
Vieira, J., Nabais, C. & Campelo, F. 2022: Dry and hot years drive growth decline of Pinus halepensis at its southern range limit in the Moroccan High Atlas Mountains. – Trees 36: 1585-1595. https://doi.org/10.1007/s00468-022-02314-z
Wang, Z., Lyu, W., Liu, H., Liang, J., Huang, J. & Zhang, Q.-B. 2021: Topographic patterns of forest decline as detected from tree rings and NDVI. – CATENA 198: 105011. https://doi.org/10.1016/j.catena.2020.105011
Yılmaz, O. Y., Akkemik, Ü., Doğan, H. O., Yılmaz, H., Sevgi, O. & Sevgi, E. 2024: The missing part of the past, current, and future distribution model of Quercus ilex L.: the eastern edge. – iForest 17(2): 90. https://doi.org/10.3832/ifor4350-016
Youssef, G., Abdelaziz, M., Aboubakre, O., Abdelali, B. & Aziz, H. 2024: Impact of climate and demographic changes on the vegetation of the M’goun Geopark UNESCO of Morocco (1984-2021). – Investig. Geogr. (Alicante) 81: 225-243. https://doi.org/10.14198/INGEO.25433
Zhang, Y., Su, T., Ma, Y., Wang, W., Zha, N. & Shao, M. 2022: Forest ecosystem service functions and their associations with landscape patterns in Renqiu City. – PloS one 17: e0265015. https://doi.org/10.1371/journal.pone.0265015
––, Yu, Z. & Niu, H. 2018: Standardized Precipitation Evapotranspiration Index is highly correlated with total water storage over China under future climate scenarios. – Atmos. Environ. 194: 123-133. https://doi.org/10.1016/j.atmosenv.2018.09.028
Zheng, Y., Han, J., Huang, Y., Fassnacht, S. R., Xie, S. & al. 2018: Vegetation response to climate conditions based on NDVI simulations using stepwise cluster analysis for the Three-River Headwaters region of China. – Ecol. Indic. 92: 18-29. https://doi.org/10.1016/j.ecolind.2017.06.040